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ABSTRACT

This paper describes a model for generative computer-assisted instruction.
This model has served as the basis for the desigh of a CAI system used go teach
problem~solving in an introductory course in digital systems design. The system
individualizes the instruction which each student receives in accordance with
:ts record of his past performance. In addition, a heuristic technique is used
.to determine the best path for each student through the tree of course concepts.
The refinement of this method of concept selection is describéd. An evaluation

of the GCAI system and results cf classroom usage are also presented.
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1. INTRODUCTION :
Over the past few years, we have been'éxpldring the concept of genepative
computer assisted instruction (GCAI). This paper summarizes the findings of

this research with respect to the usefulness of a generative CAT system in a
classrcom enviromment. The paper describes rethods used to individualize
instruction and the evolution of a Procedure used to select a.concept for
presentation to & siudent working with the CAI system.

This paper is concerned with problem oriented gystems. In a typical drill
&nd practice system values are generated and substituted for variables in a
prestored question format. The vilues of the variables are constrained so that
the resulting problem is meaningful and of an appropriate difficulty level. In
this way some of the semantic content of a question is provided. In a problem
oriented generativa system, a problem is generated from a gremmar or other
suitable structure. Both the syntax and semantics of a problem are determined
by the aystem. Thus, 'a richer variety of problems can be generated. In addi-
tion, the system has the potential of controlling the generation process so that
it can tailor the difficulty and area of emphasis to suit the individual student.

A generative CAI system must have the capability of solving the problems
that it generates. Usually, the problems will cover a specific approach to
design or a solution algorithm. They will be more complex and involved than the
manipulations performed in a drill and practice enviromment. Indeed, the
incorporation of problem solving capability and semantic knowledge indicate the
need of an Artificial Intelligence (AI) approach to generative CAI design.
However, the problem solvers needed in CAI applications are less difficult to
design for the following reasons: 1) they are concerned with specific problem |
types in a specific subject area 2)  they are generally more algorithmic than
heuristic 3) they are supplied with problem generation information including
parameters necessary for solution and do not have to extract this infommation
from the problem representation. Bolrow's STUDENT (1) and Winograd's SHRDLU
(2), for example, must first interpret the problem statement and extract essen-
tial information prior to obtaining the solution.

Névertheless,igenérative CcAI systems have benefited and can benefit further
from research in artificial intelligence on natural language understanding,
question - answering, problem solving, and automatic programming (3). Specifi-
cally, Al can be beneficial in the de81gn of more general solution routines so

8
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that it will not be necessary to implement a solutiom routine for relatively small
problem clasges. AI techniques can also contribute to the construction of selution
routines to help achieve more powerful generation éystéms; Oh fhe 6fhef hand,
study~of generative CAI and generative techniques can make a contribution te --
artificial intelligence by providing results, for example, on ways of identifying
and. using control (generation) information to design efficient and practical AT
systems.
2. MODEL FOR GENERATIVE CAI (GCAI)
A. Introduction | ‘

Figure 1 is a block diagram of a GCAI system. To individualize instruction,
_this system needs a model of the course and the student -~ the concept tree and
student record respectively. After a concept.has been selected and the appropriate
level of difficulty determined, a problem is generated and presented to the
student. The éubsequent interaction and monitoring of the student's solution
is a function of his performance. Each of the components in Figure 1. will be
discussed below.

. Concept __;gggggpj;___%,'Problem
—

» * Selector Level . Generatqr_;
Concept | Problem
Tree

Question/ -. ‘Y

Solver

Student
Record updat
data

- e ws e

Monitor

Figufe 1. System Block Diagram
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B. Course Structure

A course can be modeled as a hierarchical tree structure in which each node
' represents a ‘concept and corresponds to the following information:

1) concept number

2) concept name

3) a 1£st of doubles; the first element of each pair is the number of a

Prerequisite concept and the second, a flag indicating whether or not a
prerequisite. may be called as a subroutine

4) the plateau for that concept (how far up on the tree it is), which

implies its relative complexity

5) the name of the problem generator for that concept

6) the name of the solution roufine ‘ |

7) a list of parameters which are passed from the problem generator to the

solution routine

For example, (C7, BINARY MULTIPLICATION, ((c4 0), (c5 1)), 2, PROBI, BINMUL,
(levC7, lev(Cs, multiplicand, multijlier)) means that C7 deals with binary multi-
plication. There are two prerequisites. One of the prerequlsites may be called
as a subroutine, (C5 - binary addition). €7 is on plateau 2 of the concept tree-.
The paramcters passed from the problem generator PROBL to the solution routine,
BINMUL, are the student's levels of proficiency in concepts C7 and CS, together
with_the multiplicand and miitiplier for the generated problem.

The level of proficiency in C7 (5 1e¥C% 3) determines the difficulty of the
problem to be generated and the degree of instruction and monitoring to be
received by the student while working on a binary multipiication problem. The
parameter levCS is needed in the event concept C5 is called as a subroutine.

This representation is general and has been used in a system for digital
systems design (4) and a system for high school algebra (5)» In a varied form
it has also been used for a machine language programmlng GCAI system (6).

The digital systems design GCAI course contains twenty—one concepts begin-
ning with basic logical operatlons and number conversions (Plateaus 1, 2),
combinational design end timing diagrams (plateau 3), minimization techniques
(plateau 4), sequential design (plateaus § 6) and register transfer operations

(plateau 7).
The arcs of the tree structure (concept tree) represent prerequisite or
subconcept relations; the latter indicated by a flag. More generally, the arcs

10




Wthe concepts are small sections of a program - called - input pplmltiv.,’ ‘processing -

.
can represent other relations of interest. In machine language programming (6),

primitives, and output primitives. The relation of 1r+erest is concatenation.

. The nodes of the concept tree represent the primitives and the arcs represent

possible concatenations of the primitives to form more complex problems.
C. Problem Generator

Only two problem generator routines are used for the first thirteen concepts
in the digital systems course. This is duz to the fact that there is a great
dea. of similarity between the parameters needed for these routines. Several of
these routines require a variable number of binary, octal, decimal, or henidecimal'
character strings as parameters.

A viabl: model for a problem generator is that of a probab;llatic gramma
A context fiwe probabilistic grammar is a formal grammar whosermnritexxﬁiés have
a single nonterminal symbol on the left (generatlng symbol) Moreover, each re-
write rule has a non-zero probability aseociated with it such that the sum of
the probabilities of the rules with the same generating symbol is one. In order
to obtain problems o< ":rylng degrees of complexity, the probabillty of each re-
writc rule is made a function of a student's level of proficiency in the" concept~
being studied; rewritc rules leading to mare dji Ficult problems become more
likely as a student's proficiency increases. The probabil-ties can also be made

- functions of the estimated dlfFifultj cf the partially geuerated problem. For

example, the depth of nesting in a logical expression is one indicator of
difficulty. The probability of rewrite rules which tend to produce nested
éubexpressions exceeding a preset threshold shoulu drop to zern. This makes
the probabilities context sensitive and keeps the problems from getting out of

"~ hand.

The grammar for the problem gzenerator associated with each concept consists

of a 7-tuple of the following format:
= (S,N,T;R,P,Z,D) |

where S is the starting symbol, N is *the set of nnnterminal symbols, T the set
of terminal symbols, R the set of rewrite rules. P is an array of probabilities
with three columns since it was preferred to distinguish between only three
categories of problem difficulty. The student's previous level of performance
in a problem determines which column of probablllties will be used during the o

11
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~ generation of a problem. Each row in P correspunds to a rewrite rule. The -
muprobabilities associated with rewrite Tules having the same- generating symbol

sum to one over each column of the array. _ L

D is a function which may he used to calculate the difficulty of the
partial output string and Z is a vector of difficulty thresholds as mentioned
above. For most problem classes, neither D nor Z were deemed necessary.

Table ‘1 18 an example of a grammar which generates:logical expressions for
the concepts which teach truth table formation and the analysis of sequential B
circuits. I | | ‘ |

The first column in the array P is ghe vector of prbbabilities for beginning
students, the second columm is for intermediate level students; and the third
column is for advanced students. ‘ The harder operators ¢ (nand), ¥ (nor), and
® (exclusive-or) become more likely as a student's proficiency increases. Simi-
larly, the number of distinct variables likely to appear in an expression:
increases with student proficiency. Rules R /R2 which expand the expression also
become more likely. The vector Z specifies that the probability of these two rules

drops to zero when the length of the expression exceeds the student 8 proficiency

level by a factor of twenty.

Table 1: Probabilistic Grammar Example

N = {A,*} .

T = {p,q,r,s ,",V,4,+,8}

S+ A
Rj: A+ (A%A) .25 .3 .35 20
RZE'A + ( 4) .25 .3 .35 20
Ry: A+ p .25 A4 .07 1000
R4: A+ ¢ .25 .13 .07 1000
Rg: A+ t 0 13 .08 1000
R6: A 8 0 0 .08 1000
R7: * 5 7 .2 0 1000
Ryt * .5 .2 1000
Ryt * » 4 0 .2 .34 1000
RlO:* - ¥ 0 .2 .33 1000
R 1%~ @ 0 .2 .33] 1000

length (expression)
proficiency level

o
N

.12
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D. Problem Solvers and Solution Monitors

In order to solvc the problems generated, a set of augmented solution
algorithms is provided, one per concept. These algorithms were augmented with
additional information. Each distinct subtask in the algorithms is identified
and provided with: (1) generaﬁion threéhold, (2) question format, (3) remedial
format set, (4) answer comparator, (5) increment and decrement multipliers.
 The generation threshold indicates a proficiencj level beyond which a
student's solution to the subtask will not be monitored.

The question format is a skeletal pattern into which problem dependent
‘variables will be inserted. The formats aré used for generating questions
concerning each subtask.

The remedial set is utilized when a student's answer does not match the
svatem's solution. It usually consists of formats which provide some explanation
ot the correct solution procedure in the context of the current problem. Each
format has an associated threshold level. - If a student has a proficiency level
‘nraater than the threshold, the remedial statement is not printed out. Hence,
the completeness of the explanation provided by the remedial set decreases as
.student proficiency increases.

The answer comparator determines the degree of correctness of the student
'solutfon. In most cases, the degree of correctness can be determined by matching
the solution strirg derived by the system with that provided by the student. For
some¢ algorithms the compar;tor consists of an analysis routine which determines
the type of error being made by the student in order to provide more meaningful
remedial commentary. The analysis routine may make use of portions of the solution
algorithm to assist in characterizing the student's error. This allows the system's
procedural knowledge to be used to make remedial commentary more meaningful.

The increment and decrement multipliers deﬁermine the amount of increase in
proficiency level for each correct solution to a subtask and the decrease fbrleéqp,¢
‘incorrect solution. In this way, each subtask 1is weighted to prdduce the desired

| degree of change in level. As part of the increment and decrement, a factqr based

on the student’s prior performance in a concept i{s calculated just before the algorithm

1s called. Tais factor tends to produce increments which ere larger than .decrements.

13
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for utudents who are performing well and vice~versa for students performing poorly.

xnus, rood students are penalized less for an occasional error and poorer students
are required to become more consistently correct in order to advance to the next
l.igher level ranye.

The augmented solution algorithm leads g4 beginning student carefully through
« solution procedure while providing more freedom and less interaction for advanced
students.  The depree of freedom and monitoring is dynamically adjusted as a student's
level of performance changes. Table 2 gives examples of the varying deg?ge‘qf‘
interaction possible. Reference 4 describes problem generation and solution in

preater detail,

TABIE 2: Student Interaction in Problem Solution

Initial Level Ranpe 0-1
Porn the lopical AND of 7345,2206 in the base 8;
Tariry corresponding pairs of digits starting at

the rlph"

What is the Linary equivalent of 5?
101}

What is the binary equivalent of 6?
111

No. The hinary equivalent of 6 is 110.

What is the logical AND of 101,1107

100

What is the lopical AND of 5, 62

4 (Mote: Here student's level becomes >1)
Wit is the logical AND of 4,02...

Initial Level Range 1-2
Form the logical AND of A2.4,1.C4 in the base 16:
Modify A2.4 by adding tralllng and/or leading zeros.

DA2 .4

Ho. Av.4 should e changed to A2.40

Modity 1.C4 by adding trailing and/or leading zeros.
nl.cu

Torm the logical AND of A2.40 ,01.C4 in base 16:
Takinp correspondlng pairs of dlglts starting at

the right:
What is the logical AND of 0,u4?
0

What is the lopical AND of 4,C?...

Inftial lLevel Ranpe 2-2
Form the lopical AND of C
wiat lu the lopical AND o
0. HOO

No.  The logicul AND of C

-4,1.493 in the base 16:
C3.400,01.493?

Hy W

Pl
[

560, 01.483 is 01.400

14




L. Review Mode and lLxample Mode

Two additional and extremely attractive benefits of this generative approach
to CAI are the capability to operate in & review mode and an example mode. After
the concept has been mastered (proficiency level >3), all subtasks will be soived
by the system and no solution monitobing will take place. Only summarizing data

J4nd sub-concept solutions will be prlnted out. A student can use this mode to

nuxckly obtain solutions to several of the more dlfflculy problems fcr later self-
~vudy. ‘

When dealing with a new concept, the student may be uncertain as to some details
of the usolution procedure. There is occasionally some ambiguity in questions which
‘are posed. Also, while variable formats are allowed for the student's response,
ttie system is usually better able to Handle certain formats than others. To alle-
viate these difficulties, an example mode may be entered by setting a flag which
cauren cach question posed to the student to be followed by a "write' statement
rather than a '"read" statement. The net effect is for the system to correctly
answer all of its own questions instead of monitoring the student's response. The
student is able to familiarize himself with the content of the conccopt and see whet
will be expected of him. With each question, fhe proficiency level temporarily

increases so that the student observes a change in solution monitoring similar to
that which would ie obtained during normal interaction with the system. The example

mode option is made available prior to a student's initial use of each concept and

is almost always used.

3. SOME CHOICE FUNCTIONS FOR CAI

A, Introduction

The cyntems concept selector selects a concept for study based on a student's
past performance. The concept selector is the interface between the student: and
i1.0 trce of course concepts. It determines which concept is 'best' for a student
at any piven time, and it traces an 'optimal' path for each student through the
conrnse concept tree,

't is di{ficult to measure the 'goodness' of a particular concept choice and
there would probably be no consenus among educators as to which particular concept
it beut for a student at a particular point in time. The goals of concept selection,

Lowever, dre necessarily clear. The time spent by each student in masterlng the

15
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AT vourse should be kept to a minimum. Thus, ‘he ‘should not be requlred to waste
iz onia concept already mastered; nor should he be expected to solve a problem
if Le Las not shown mastery of its pPrerequisite concepts. The intent is to pace
him throuph the course concepts as quickly as possible without confusing hin.

, There have been many studies on the effect of learner versus system control in
+ (Al environment. These studies seem somewhat inconclusive to date. Rather than

~triet the otudent to one mode of control, the approach taken was to attempt to

Rt A R

o the best jobr of concept selection possible, but to always prov1de the student
«e opportunity to veto any individual system selection or to take control and
bypass system selection entirely.
“he task of concept selection is done in two phases: the first phase deter-
mines the current plateau of the concept tree; the second selects the actual concept

to to worked.
B. betermining the Current Plateau

A record of past performance 18 maintained for each studént. This student
model i8 shown in Table 3. The twelve items in the tab%e are saved for each of
the twenty-one concepts of the digital s»:tems design course. As mentiloned above,
the diffiéulty of the problem generated, and the amount of instruction and monitoring
a student receives is prpportional to his level of competence iﬁ that concept. A
studept‘s level of competence4is a real number betweén .5 and 3. it i8 incremented
by a small amount (|AL|<.28) for each correct answer and decremented for each in-
correct ‘answer. A8 a student will normally answer mora questions correctly than in-

correctly, his level should gradually increase. T,

In addition, for each student, the system saves the current plateau and &
péﬁformance regulator, called the master average. The master average varies
between 1.4 and 2.5. A significant increase or decrease in concept levei
({AL|>.5) results in a proportional change in the master average in the oppo4
site diraction. Consistently good performance will result in a low master .

average. The master average is 1pdated after each problem is completed.

16
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. TABLI! 3: Student Record

1 The present Jevel for ocach concept (I.)

W A weiphted averape of level changes for each concept {WTAVG)
3 Last level change (AL)

The date each concept was last worked

A sequernce number indicating the ordering of system selectlon
# of times concepts worked in 0-1 range

# of times concepts worked in 1-2 range.

# of times concepts worked in 2-3 range

Date number of last time each concept worked

# of times student redected each concept

# of times each concept was selected by system and accepted by student

-

~N

e
O W

When a student's average level in all the concepts at his current plateau
cxceeds his master average, he is eligible to proceed to the next plateau.

{'onsequently, the better a student performs, the faster he will progress up through

———— .

the concept tree. It is possible that a concept wlll only be worked once or even'
not at all. TFor this reason, a post-test is given whiéh consists of a challenging
qﬁestion for each cohcept. As a result of the post~test, the system advances him
to the next plateau or may require him to review each conmept whose corresponding
post-test question was answered incorrectly. The decision whether or not to review

< concept is based on the number of times he has worked that concept, his level in

e

vhat concept, and his master average.
If a student is advanced to the next plateau, a pre-test is given to initialize
the levels for the concepts on that plateau. The pre-test consists of a set of
three or four questions for each concept. The questions get progressively more
difficult. A student is given two tries at each question and branched to the next
set of questions if both answers are incorrect. The starting level for each con-
“cept is a function of how many of the set of questions dealing with that concept
wore answered correctly. The starting level ranges from .5 to 1.0.
The pre-test for the first plateau is also used to initialize the master average.
Thie more questions answered correctly in the first pre-test, the lower will be the

utarting master average.

. Concept Selection
There are three or four concepts on most plateaus of the concept tree. A
preliminary check is first made to ensure that the average level of the prerequisites

for each concept exceeds the student's master average. If this is not the case,

17
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this concept lu replaced as a candidate by its prerequisite with the lowest level.
“his provides an additional opportunity for review in case the student has been
prosressing too rapidly.

statisties are available from each student's record (refer to Table 3) con-
cerning the last date each concept was used, its current level, the last change in
level, and the number of times the concept has been selected by the system or
rejected by the student in the past. From this 'data, many parameter values can be -
“wtleulated for each concept and input to the concept selector. The concept selector
«itempts to predict which concept will advance the student the most in the course.

A scoring polynomial as used by Samuel (7) in his well-known Checkers program
wai the basis for the concept selector. A scoring polynomial consists of a set of
parameter values to be calculated for each considered move and associated co-
«flicients or weights; A preliminary training period was undergone in order to
Jdetermine a pood set of coefficient values. During actual play, the‘noge‘wnich
scored the hiphest was always made.  In a similar mannef:mthe>conoept which scores
the highest among those being considered should be selected for pPresentation to
the student. ' .

Samuel's model aesumes that there is a single "best move" at any point in the
game. lowever, the "best concept" for a given student may depend on his particulér‘
iearner prelerences and personality traits. Consequently, it was decided to provide
for four separate sets of polynomials and use a student's‘paSt performance to deter-
mine which set appeared best suited to him.

Two trainirg periods were undergone by the system in order to define four
scoring polynomials. Initially, a single scoring polynomial which appeared to
work reasonably well was derlved This polynomial is shown in Table Uu.

TABLE 4: Original Independent Variables

Var. 1 (2%AL7)2%wl  wl=1 if L1<0;
=0 1f L>0
Var. 2 (Q~QI)/(Q~QM)*W2 w2=1l,2 if Q>0;

=3 if Q=0 (Concept never worked)

Var. 3 R*w3 R=# of uses of a concept-at present level range
(0-1, 1-2, 2-3)/total number of times worked; w3=-1

Var. &4 |aLp| /Lyt wh=1

. 18
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Table‘é: Continued
Var. 5 (TD+TP)*w5 T owh=, 1
var. & © (3-Lp)*w6  w6=l if Li<3 :

=-25 if Lp>3

Level of concept I;

Ly: Concept level; AL; Last level cnange; for concept I

I:: Current concept being considered; Quy: Minimum sequence number of
all concepts on present plateau =

Q:: Current sequence number, QI: Sequence number of last‘ttme concept
I was worked

Tp: Number of prerequisites directly callabl~ as subproblems; Tp: Total

number of prerequisites

B The rationale for the parameters of the polynomlal.was as fOllOWS-
Parameter 1 contributes to the weighted sum if the student's level in a concept

hai: just dropped. Obviously, he has not mastered this concept. A decrease in
level normally results in more systemfnonitoring and help. Parameter 2 favors

the concept that has been waltlng the longest. Parameter 3 favors a concept that
is in 7 new or relatively unstable level range (R << l) Parameter 4 favors a
concept whose level is changing rapidly. Parameter 5 favors the concept which

is based on the most prerequisite concepts since working this concept will help

to review earlier concepts. Parameter 6 favors,the concept which currently has' the
lowest level. When a concept has been mastered (level > 3) a large decrement

is added to that.concept's score.
| Observation of students‘in the course showed that they initially relied
heavily on the concept selector. As the course progressed; “hey assumed more
.of the task of concept selection. Part of the reason was their\ increased familiar-
ity with the course contents and knowledge of their weaker areas. This aspect

of the situation was enconraged as it normally resulted in less waiting time
between concepts and the students seemed quite proficient at determining their

own needs. | ‘

l'or two senesters, data was collected on all student and system concept

e leetions (8). A record was kept of parameter values for each considered concept,
the actual concept selected, student acceptance or rejection, and subsequent thange
in level for that corncept. TFourteen additional parameters were added to the
oriaihai six (see Table 5) and a multiple linear regression amalysis was performed
to caleulatc optimal coefficients for the twenty independent variables. The
dependent variable value associated with each concept selection was made proportional
to the resulting change in level as the goal of concept selection was to advance

19
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TABLE 5: New Independent Variableéu

Var. 1-Var 6 same as Table 4

Var. 7 ALy (last level change)

Var. 8 WIAVGy (weighted average level change)
Var. 9 Li (level)

Var. 10 # of days since last worked concept I
Var. 11 # of days since last used system -
Var. 12 Total of {# of concept worked

Var. 13 Total # of days worked

Var. 14 Var. 12/Var. 13 =

Var. 15 # of times student worked concept I
Var. 16 # of times student rejected concept I
Var. 17 # of times system selected concept I
Var. 18 # of times student selected concept I
Var. 19 Var. 16/Var. 17

Var. 20 {# of times worked concept I at present level range

This Intermediate step produced a single scoring polynomial which should
theoretically be better than the original polynomial with only six variables
and non-optimal coefficients. To compare these polynomials, a second regression
Jnulyﬁis was performed using only the original six independent variables as
predictors. This analysis produced a multiple correlation coefficient of .18
4% compared to .48 for the expanded scoring poiynomial.

The final step was to perform a cluster analysis on the data collected in
an attempt to identify four groups of similar students. The results are shown
in Table 6 alony with the multiple correlation coefficient as§gciatéd with

-

€ach group. 'tPor all except group #3, this coefficient is-hHigher than that

pei
-
o

associated with the population as a whole (.61, ;§lg“fu3, .Sslvgrsus .48) and

should thus lead to improved concept seleq;ioﬁ”for the majority »f students.

TABLE 6: Regressions on Groups:

Group #1 Group #2 Group #3 Group #u
o 3 ' 8 ]_. .
Vare, f e Feo Var.# By Fy Var.#BI FI Var . # BI Fy
19 -1.226 100.884 i3 -.895 30.696 . ? .581 30.642 1s -1.348 69.251
4 2427 35.684 2 .262 12.474 19  -.814 24.520 7 .375 10.8u8
9 - . L67 14.437 20 .526 11.207 5 .301 23.871 S .174 7.948
2 .1u9 12.690 3 1.870 10.959 9 -.531 16.423 16 .125 7.795
1€ . 063 11.638 15 -.410 8.716 10 .007 - 8.416 1 .136 6.042
b .551 11.230 5 .287 8.524 18 .126 7.887 9 -.214 5.021
R 482 7.0867 9 -.6390 8.106 12 -.003 5.091 3 .315 L.u71
i -. 002 3.674 18 250 6.572 3 .346 L,547 8 .350 3.037
7 ‘ .227 3.193 6 -.497 L4.,812 16 .072 3.354 6 .067 2.207
i -. 148 1.845 L 406 2.923 6 -.167 3.134 15 ~.012 1.067
p = .61 p = .61 p = .43 ‘ p = .48
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vome obhservations from this table are that variable 19 appears at or near the
top of all groups. Variables 5 and 9 appear near the top of all groups. Variable
¢ hag a relatively hiph significance in groups 1 and 2 while variable 7 has a
relatively high significance in groups 3 and 4.

The complete concept selection cycle consists of the following steps:

Determine the student's current group

I'ind the current plateau

Identify candidate concepts

I'valuate each concept using scoring polynomial for student's group.
. Present highest scoring concept

. Update scoring polynomial compatability ratios

£ W

[e2 BN o2}

nteper 2) through 5) have been discussed previously. Steps 1) and 6) are accomplished

in the following manner. A compatability ratio is maintained by student‘fbr each
seoring, polynomial. The student is placed im the group which has the highest compati-
hility ratio. The concept which would be chosen by each group is determined, and

the concept selected by the student's current group is presented.’ After completion,
the compatibility ratios of all groups which selected this concept are updated to
refloct the student's change in performance level. In the event the student rejected
_the concept selected and chose another considered concept, the compatability ratios

of all groups which chose this concept would be updated instead.

The next section will discuss results of classroom experience with this

fenerative CAI system.

4. RESULTS AND CONCLUSIONS
It is a rather involved problem to control an educational experiment carefully

cnougli to obtain a meaningful comparisoﬁmbf one teaching method versus another.

in :clecting control groups, there are many variables which enter in such as motiva-
tion and aptitude for the course, inherent favorable or unfavorable biases towards
vomputers, and personality traits which are difficult to measure. Most of our
cutlhiusiasm and interest in this project has been spurred by conversations with
students who have used this system and an examination of student questionnaires which

rate the system very highly as an educational tool (more on this later).

In any event, an experiment was set up during‘the fall semester of 1973 in
which two randomly assigned classes (determined by the unversity class scheduling
algorithm) of approximately thirty students each were designated as GCAI and control.
group respectively. Both classes had the samé instructor and used the same text-

book. The basic differencesbetween the course structure for each group are shown

below: ‘ 2 1
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GCAI Class Control Class
- 2 hours of lecture/week 3 hours of lecture,week
homework problems déne thru GCAI . conventiomal homework a551gnments
Seven 20-minute quizzes two 75-minute exams

The GCAL students were required to take short quizzes after each plateau.
These were administered on an individual basis and were primarily used to
encourage students to keep a reasonable pace: .

The GCAI system was implemented on an IBM 360/65 computer. Students -worked
4l their own pace and were free to use it whenever the time-sharing system, CPS

(97, was operating.

Prior to the start of the course, both groups wefe given the same.pre-test
which was a simplified version of a previous semester's final exam. The mean
scbrg for th2 control group was 25 out of a possible score of 100; the GCAI
class mean score was only 9. Median scores for each group were identical to the .
mean scores.

Yarlier analysis of past student performange in thlS course had shown the
single best predictor of success to be the student's overall quality point ratio
(GPR) or cumulative average of grades since entering the university. The mean
OI' for the control group was 2.8 out of a possible 4.0 versus only 2.5 for the
GUAT group.

Both groups of students were given the same final exam; however, there was .
no sipnificant difference in their performance (mean score GCAI - 115/150, Control.
113/152). Since the GCAI groupt spent 1/3 less time in class and was not as well
hrepared for the course, this is aevery favorable result.

This course is a prerequisite for an advanced digital design course. There
were approximately ten students from .each group in this course during the following
nemester. Agpain there was no significant difference between the grades received
by the GCAI students and the control group.

Three different instructors have used the GCAI system over a period of two
years. They generally feel that GCAI is'BEBéficial in that it frees them from
hlviny to discuss at length routine problems and techniques. Instead they are
Able to concentrate on more difficult concepts and intuitive approaches to design

2 =tudents are receiving practice in the basic techniques and algorithms through

22
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AS bas been mentioned, student reaction to GCAI is generally quite favorable.

“he rosults of a questionnaire returned by sixty-four students are summarized in
Table 7. | '

TABLE 7: Student Questionnaire

1. T preferred this System to conventional homework assignments

SD D 8] A SA
3% 14% 8% 43% 3% -
2. CAI is an inefficient use of the student's time
20% - h1% 17% 16% 6%
3. | was concerned that I might not‘be understanding the material

All% Lu% 17% 24% 3%

4.  CAl made it possible‘for me to learn quickly

2% 16% 17% 60% 5%
5. The CAI system did a good job of selecting concepts
9% 29% 23%  36% 3% .
6. I found the ""example mode" feature useful
0% 3% 9% - 50%  38%
Sbh: Gtrongly disagree; D: Disagree; U: Uncertain; A: Agree;

AT Ltrongly agree

The only question which is not responded to in a manner which indicates sStrong
acceptance is #5 dealing with the goodness of concept selection. Here 39% of
the students responded favorably and 38% unfavorably. We feel this is a reasonable
achievement in a very difficult area of decision making where there is clearly no
©inple right or wrong solution. This isa somewhatvbetter'rating than that received
by the earlier scoring polynomial. '

In conclusion, we feel as do the majority of students who have used GCATL;
it provides an opportunity to learn by doing and is an effective way to teach
probLem-oriented material. Students receive immediate feedback and learn from
their mistakes. GCAI helps a student master the basic concepts and enables the

student and instructor 1O concentrate on more advanced material. .



Pi.  GENERATIVE CAI IN MACHINE LANGUAGE PROGRAMMING
. dntroduction

Prior reports have described the MALT System (MAchine Language Tutor -

See Reterences 6, 10.). MALT is concerned with teachlng mach ine- language program-
ming for a simplified version of the Digital Equipment Corporation PDP-8 mini-
computer. The instruction set of the hypothetical machine is- virtually 1dent1cal
to that of the PDP-8. The major difference is that this computer has only 4008‘
We.ory registers; consequently, each register is directly accessible. This means

- thut students can learn the fundamentals of machine-language programming without
tie added complexity of memory page consideration.

MALT is a generative CAI system in two important senses. First, it creates
ity own sample programmlng problems using a varlety of heuristic techniques. It
is -not dependent upon the course author for a complete supply of ready-made problems
and their solutions. Instead, by beginning with only a series of basic probiem
elements or sentences, it generates a problem that is consistent with the user's
present ability.

Another important way in which the system is truly generative is its ability
‘ to design a solution program for the problem that it has generated. By using
hasic algorithms supplied by the course instructor, the system can produce the
actual machine code of a solution program. Thils implies that the system is quite
(lexible, since later alteration and extensions involve only the addition of new
programming algorlthms, not massive system. reorganization.

MALT attempts, through constant monitoring of the student's program to deter-
mine not only the existence of logical errors, but also their location in the
propram. This ability eqables the system to be much like the human teacher; that
is, it can note and correct logical errors before they develop into undesirable
programming. habits. .

The system attempts to tailor its presentation to fit the abilities of the
students. Any problem that is generated is designed to provide the student with
a4 challenge, while not being beyond his capabilities. The dialogue initiated by
the system will also be governed by the user's performance. A beginning stﬁdent
will receive a wide variety of hints and suggestions for the design of his
program. Also, his errors w1ll reSult in quite explicit and complete remedial

messages. A the student ¢ ogresses through the material, he will receive less

system information and be given more freedom in his programming actions. In
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addition, the more elementary sub-tasks w1ll be programmed for him. When the ‘Student
achleves hiph proficiency, the system can function purely as a problem solver in
that all programs will be generated by it. This fac111ty is useful if a student
desires to study examples of advanced problems and their corresponding solution
programs. | ‘ o |

~Au the system questions the student, it is constantly developihg its own
solution program for comparison with the student's program. In this way, a given
prugrammlng concept is rarely presented the same way more than once to a particular

‘tudent. The student's enjoyment of the system is thereby greatly enhanced because
he receives new dialogue with every problem.

The actual operation of MALT is straightforward. After the student identifies
himself to the system, his records are obtained and evaluated. These records deter-
mnine the dlfflcglty and content of the problem generated and the amount of instructional
puidance that the student will receive. Next a sample programming problem suited |
to his abilities is generated. To help him design his program, the system will then
develop a logic chart or list of sub-tasks. These sub-tasks break the problem into
a series of smaller, more manageable steps and are of great help to the novice
programmer. ‘

As the student undertakes each sub-task in the programming process, a
corresponding concept routine is entered by the CAI system, which guides the student:
through the construction of that part of his program. During this phase, the student
is constantly being given feedback as to the correctness of his program. If his
program introduces logical errors, the system will point these out and offer help -
ful suggestions for their correctlon. If the system checking‘procedures determine
that the student might benefit from observing his program 1n operation, it also
has the capability to simulate statement by statement program execution -

Fipure 2 is a block diagram of the Malt system. Table 8 provides a complete
example of the operation of MALT. The comments in square brackets have been added
to clarify this example for anyone not fami}iar with the PDP-8 instruction set.

Lach student resﬁthe is pPreceded by a dasH:;‘Theveéelpgue shown is that which

SN

‘would Le received by a beginning student.
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TABLE 8: MALT Sample Dialogue

-

Your problem is to write a program which will: .
Read in 20 (octal? ASCII characters and store them in registers 232
through 252. . .

Form the sum of registers 232 thru 252 in the accumulator. )

If <his results in a nonzero LINK, stop with the (ACC) = 7377,
otherwise stop with (ACC) = 0000. .

Is this problem OK?
—yes

Here are the sub-tasks for the first line.

1) Initlalize a ptr to register 232.

2) Initialize a ctr with the valuc of —20(octal).
3; Read in a character. )
4) Store it away using the ptr.

5} Update the ptr. . .
6) Update the ctr and if it is not zero, jump back to start of loop.

SUB-TASK 1: {

Since we may need a ptr later, we will store the ptr value in memory
and move it 10 a register which we will use as the actual ptr.

Use M377 to store the ptr value, and M376 as the ptr.

Ma77: R Tt

—0232

Now, get the ptr value: .

M£00: [location ot st instruction]

- .76 [add in contents of M376}

W.- ONG! :

“TAD 377" is coded as :1377

And deposit it into the ptr:

MO0!L:

—23376 [Deposit ACC into M376, clear ACC.}

SUB-TASK 2: ]

We will store the ctr value in memory and then move it into another
register for use as the ctr.

g[sse_,;emtcr 375 to store the ctr value and register 374 as the ctr.

—7757
7757 can't be used as the ctr value. Try again!
M37s: : . .

-—]766 {—20in 2's complement form)
First, get the ctr value:
M003:

—1375
And deposit it into the ctr.
MO003:

—3374

SUB-TASK 3:

‘First, check the reader flag.

MOG4: o

—5031

NO!

To check the reader flag is 6031,

lr:ldcggsjump back one register if it's not ready.

—S004 JUMP to M004.}
Now, operate the reader.
MOO6:

~—6036 -

SUB-TASK 4:

MO007:

—3376

Wrong! .

“DCA 1 PTR™ is :3776 [This should be an indirect deposit.]

SUB-TASK §:
OK, update the ptr.
M010:

—2376 {Increment M376 and skip next instruction if M376 contains
0000, ) al
SUB-TASK 6:

Now, increment the ctr.

MOt 1:

—2374 ‘
And if not zero, jump back to start of joop.
MO12:

—35002

Wrong! . L
The loop starts in register 004 so it is 5004
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2. Results and Conclusions ‘

The system has been implemented in the CPS (9) language on the IBM 360/365
at the University of Connecticut Computer Center. Students can use this system
whenever they desire. There is also a batch mode simulator of this computer
which they use for class projects of a more ambitious nature.

tudent reaction to MALT has been very favorable. They feel this system
helps to bridge the gap between what they have learned in class, or from the
taxtbook, and what they need to know to program independently in batch-mode.
Normally, students spent two Weeks using MALT and were then giver a week to get
a rather sizeable problem coded and running in batch-mode. This proved to be
siynificantly easier for students who had used MALT than for those whp had not

See ques?ion 2 in Table 9).

A questionnaire was distributed to the classes using MALT. The results of
this questionnaire are‘tabulated in Table 9. It appears that the students feel
that this experience was beneficial and good preparation‘for learning to program
independently. On the whole, students were not bothered by the fact that MALT
requires them to adhere to a parficular "flowchart'"., As indicated by question seven,
improvements could be made to the algorithm which determines that a generated
prot.iem is sufficiently different from previous problems presented to that student.

‘Ninety students responded to the questionnaire.

N
(0 0]
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TABLE 9: MALT Student Evaluation

For question 1-9 the percentage of students giving the following responses are
tabulated

Strongly Disagree Uncertain Agree Strongly

Disagree Agree

1. The System was useful in introducing me to machine language programming.
2 -2 4 56 35

2. It was relatively easy to learn to use the batch version of the assembler since
I had bLeen introduced to programming concepts through MALT

0 ) 18 50 26
J. Since the sub-tasks were always laid out for me, I felt very constrainted u51ng
MALT
5 Lg 21 25 0

4. Because the sub-tasks were laid out, I only. learned the mechanlcs of programming
and really didn't understand what was going on. »

9 46 31 . 11 3

“he approach taken in printing out the sub-tasks was good as it taught me how
to organize a machlne—language program.

w

0 u 20 62 T
6. The problem became more difficult as my level increased.

2 11 21 60 6
7. There was a good variety in the problems I received in MALT.

6 28 17 L8 1
8. 1In peneral, I enjoyed the interaction with MALT.

1 0 14 69 16

Overall, we féel that MALT is an effective demonstration of what can be
accomplished in CAI with the limited use of AI techniques. It should be stressed
that MALT's desipgn has been influenced by AI research, but certainly much more
could be dore in the way of incorporating AI Research in problem solving and
program synthesiz. The desire to produce a working system with reasonable
responte time on an existing time-sharing system preciuded this possibility.
topefully, MALT will challenge others with an interest in CAI and AI to purse

taicpoal further.
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t17. COMPUTFR ASSISTANCE IN THE DIGITAL LABCRATORY
1. introduction
Most of the CAIL systems implemented so far teach subject areas that are

nurmally being taught in a classroom environment. Very little work has been

dene in . the area of laboratory instruction., Neal and Meller [11] have 1mplemented ,

@ iyi.tem which teaches students to operate laboratory electronic instruments.
In the {ield of computer science,: the student's backgrounds are quite

wiverse, Man? of them come from fields other than electrical engineéring aﬁd

tliey have little or no knowledge of the use of electronic laboratory equipment.

tiowever, most of them have.learned the basic design techniques for digital
circuitry.
1t is quite difficult for someone with no knowledge of laboratory instrument-

ation to implement a circuit design using standard integrated circuits. A computer

siystem has been designed and implemented to help them in the constructlon, debugging

and testing of a digital circuit.

2. Oveérview of CAILD System
CAILD is a Computer Assisted Instruction system for Logic circuit Debugging

ind testing. It is implemented on a PDP-9 computer system. (See Figure 3 for

CAILD Block Diagram).

PDP~-9 <\ A/D
DISK COMPUTER CONVERTER
3 \g
TTY ' Display : CAILD CAILD
Terminal Interfacing Monitoring

b Network Network

Student

logic Board Test Probe
Pipure 3:  CAILD iardward Configuratdon
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By using the CAILD system, students are able to wire up their own logic network,
vdebug it and test ‘it without any knowledge of the use of laboratory instruments.
The CAIL. system conéists of a Student Logic circuit board, and interface network,
a monitoring network, a test probe, a Tektronix 4010 display terminal and all
systems software that is responsible for the instruction of -logic circuit de-
bugging and testing.

The student designs a circuit and prepares a wiring diagram prior to the
rse of the system. The student's circuit is wired on the Student Logic Circuit
board. NAND gates and flip-flops are provided on the circuit board. The student
merely has to interconnect logic elements on the circﬁit board to build the des-
igned circuit. The circuit board is then interfaced to the PDP-9 computer and
the student inputs the circuit equations into the computer.

A syntax checker checks for syntax errors made in the equations and the NAND
format conversion routine converts them into NAND fdrmat since only NAND gates
are available on the circuit board. The debugger in the system compares the out-
put of the physical circuit with the simulated output of the equations for each
possible input condition in order to verify whether the physical circuit, in
fact, realizes the given set of equations. If they do not agree, the system will
guide the student through the whole debugging process until all the&ggufées of

error are found and corrected. See Table 10 for a sample sesséion.

TABLE 10: CAILD Dialogue

What is the output cirenit point for variable Jl1?
el Q5
Equation under test:
J1=(~-X14-X24Y3)4(-X1+X24-Y3)4(X14~X24-Y3)+{(X14X24Y3);
Do you wish to print out all test conditions
(Y or N)
bHEH N;
Simulated output condition: 1
Actual circuit output condition: 0
Input conditions: X1 X2 Y3
' l1 0 0 .
What is the output circuit point for the following term:
{-X14-X21Y3)
D34 P22;
Simulated output condition: 1
Actual circuit output condition: 1
Input conditions: X1 X2 Y3
.1 0 o©
put the test probe on the input of the next higher level gate which
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Table 10 -~ continued

is connected to the output of (-X14-X24Y3)
Type alt mode when you are ready. )
** (User puts the test probe at the test point and types alt mode)
Either you have a wiring error or an open circuit at the test point.
Please correct the fault. After the correction, type alt mode .
to return to the debugging phase.

*% (User corrects the fault and types alt mode)
‘Equation under test: ‘
J1=(-X1 -X2 Y3) (-X1+X2+—Y3)+(Xl+—X2+—Y3)+(Xl+X2+Y3);
Do you wish to print out all the test conditions?
(Y or N) : '

% N; i
Testing completed for one equation.
Please tell me the circuit point for variable K1l.

e 034 K ‘ . :

Note: % indicates the response for the user

After debugging the circuit, a test mode is entered. Under this mode
the student is able to specify the input conditions and present st: te for a
sequential logic circuiz. If the circuit is a combinational circuit, the studept
specifies input conditions only. The system applies these student specified
conditions to the physical circuit and returns the r;esulting output and next state
to the student. By observing the output and next state of the physical circuit,
the student is able to determine whether the physical circuit realizes the original
desipn. ‘

CAILD by itself is not a complete CAI system since it does not teach
how to design logic networks. However, CAILD can be used in conjunction with a
CAT system in which students learn the basic concepts of comptter science. _Certain
concepts in this system are devofed to the design of combinational and sequential
lopic circuits. Tﬂémdesign proBléms are generated by this system. The soclution
‘ to the desipn problem results in a set of equations which describe the circuit.
At this point the student can wire up the circuit on the Student Logic Circuit
Board. The circuit will be debugged and tested under the guidance of the CAILD
system. Finally, the student will cbtain a working circuit for the original design
problem. : |

Students can build either combinational or sequential circuits. There
JAPe WO sets of‘four flip-flops (JK and Delay) available, but only one set can

be used at a-time. iHence, sequential circuits with up to sixteen states can be

desipned.
S\ 82
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There are two external input lines, 32 NAND gates and twelve inverters. The
outputs of either set of flip-flops can also be used as external circuit inputs for
combinational circuits. This allows the design of fairly sizeable combinational
circuits involving up tn six input lines. The number of outpufs for combinational

circuits is .limited only by the available logic elements.

3. System Evaluation

CAILD has been used in an introductory computer science course which teaches
:he design of digital networks as well as programming a minicomputer. There were
twenty students in this class. Eleven were electrical engineers; the rest were
predominately mathematics majors. None of the students had any prior exposure
to digital design. The electrical engineers were taking their first electronics
laboratory and would encounter experiments on digital logic design later on in the
semester. The majority of students were sophomores.

The students in this class were required to design, construct, and debug
hoth a combinational and sequential eircuit with the aid of CAILD. The majority
of students were able to sﬁccessfully complete this task in about three and one-
half hours (=60 minutes design, *90 minutes wiring, *60 minutes debugging and
testing with CAILD). Some of the circuits designed were full-adders, code-
converters, decimal counters, and shift registers.

All but two of the non-electrical engineers found this to be a very stimula-~
ting part of the course as it gave them some hands-on experience applying the
conuepts.they had learned in class. Similarly, all but two of the electrical
enpineers found this to be a very helpful pfeparation for their future project
in the electronics laboratory.

The basic system is currently being expanded to include additional sub-
routines which will enable the student to make use of CAILD prior to actual
circuit construction. Students will be able to verify that their equations accurately
represent the transition table or truth table they had in mind. A wiring diagram
will be printed out and saved by CAILD for use during the debugging process.

Tn summary, we believe CAILD is an. effective tool for teaching the ﬁse‘of
inteprated circuit chips. It also teaches students how to locate faulty com-
ponents and detect wiring errors. It makes their classroom work more meaningful
as it provides them with some actual design experience.

The application to digital network design is, of course, moét natural. However,

the basic philotophy of CAILD could be used in the computerized teaching of other

laboratory courses. 3 3 .
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IV. A GENLPATIVE A}"I'ROACH TO THL STUDY OF PROBLEMS
1. Introduction

This portion of the report describes research on problem solving for generative
CAT. The goal of this research is a formalism for problem generation which is
adaptable to many different subject areas. Since any implementation for a specific
problem area will make use of application dependent information and procedures,
the general formalism is intended to provide an approach which can be tailored
and extended as. application requires. |

>Yollowing sections include a model for generation, a formalism which provides
some details of the model, and examples which illustrate the use of the model.

The model incorporates heuristies which correspond fn a dual manner to
Polva‘type heuristicsbfor problem solution. The intent of the generation paradigm
mipht well be labeled, how to generate it. The formalism studies the‘possible .
:itructure a problem can have in terms of basic problems and the relationship‘éf"“
'hiis structure to that of the solutidn to the problem. Possible structures of

a problem are expressed as operations on subproblems.

lieuristics of Problem Solving
In this study we should not neglect any sort of problem and should find out

common features in the way of handling all sorts of problems; we should aim at
uunerql features, independent of the subject matter of the problem. Moreover,
"the stﬁdy,of heuristic has 'practical' aims; a better understanding of the mental
opepafibns typically useful in solving problems" will be directly applicable to

the teaching and learning process.
In How to Solve It (12) Polya describes a problem as consisting of three parts:

the unknown, data, and condition. He presents corresponding heuristics which can
help to find a solution to the problem. Polya presents a general approach to
solving a problem: 1) understand the problem 2) ~devise a plan 3) cafry out
the plan  4) examine the solutionm. ‘

A problem can be understood by identifying its parts (unknown, data, and
condition) and by-establishing relationships among these parts with respect to
a bace of semantic information.

A plan for solution may be obtained by usiﬁg the semantic base to find a
connection between the data and the unknown,subjéct to the restraints specified
Ly the condition portion of the problem. The plan will make use of subgoals which
can be derived by using related probiems. - A subgoal may be part of the original

prolslem, a similar problem having the same unknown, the same problem with auxiliary
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elements introduced or terms replaced by their definitions. Problems may be
relared accerding to subpart, analogy, specialization, or generalization. Related
probiems van be areived at Ly varying and modifying the three parts of a.problem.
These heuristic guidelines are more of an 'art' than a science; it.is an art to
recognize the utility of a related problem.

A plan consists of a sequence of subproblems and subgoals, each of which
shiould be solvable, such that the combined solutions give a solution to the
oripinal ‘problem. A plan directs the synthesis of a sdlution routine out of
r.ubgoal solutions. ‘

The third step is the implementation of the plan. Each subgoal of the plan
muot be attained or an alternate found. A plan is a skeleton of a procedure for
obtaining the solution. A plan must be refined from a general form to a detailed
procedure. During this progression it may turn out tha the plan fails. If so
it must be patched or discarded. )

The last step is solution verification. The synthesized solution routine
can he checked by specialization, jgeneralization, or by variation of the'data.
Specialization is the application of the solution routine to a special case or
nubclass of problems; generalization, the application to a more general problem,
The rolution should work for special cases and for varied data values and perhaps
may work for - other problems. ' '

The four steps of 1) understanding 2) planning 3) execution 4) verification

- ure themselves a general plan for a general problem solver.

2. The Generation Process

Generation is the process of producing many specific items from a general
object. Generation is dual ('reverse' process) to analysis which is the passage
from the specific to the general. The specific items are called interpretations;
the peneral object, a representation.

Formally, the relationship of a representation to its interpretations is
defined as a set function from the collection of representations to the collection of
c¢lasses of interpretations. This set function and a corresponding representation
furve the same expressive power as the collection of all its interpretations, and,
morcover, offer the potential of more powerful operations and transformations.

By making'the set function dependent on other variables it can be constrained
to map into a particular subclass of interpretations. For example, it may be
made dependent on student performance or the modality of a verb; the former, for
‘he generation of problems in CAI and the létter, for the generation of sentences
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CAi, and, in particular, the teaching of problem solving, (4,13) provided
the initial motivation for this investigation. Koffman utilized a concept tree, (13),
the arcs of which corresponded to subproblem or prerequisite relationships, as
a control structure which determined possible calling sequences among the generation

and solution routines of his CAI system.

A. PrOblemfGeneration

For problem generation the representation involves a set of objects and
postible relationships which hold between them. The set of objects and relation-
rhips is called a problem model. A problem itself is an inquiry which seeks
properties or consequences of a given interpfetatibn of the model.

Following Polya, pboblems have a goal or solution, which may be an unknown
value, a sequence of actions, a program, a proof, etc. In addition, all problems
have explicit information, the data, which is given and is'usually needed to solve
a problem. Other information which is implicit may also be needed to solve the
. problem. This impliecit information i; not part of the data, it may be contained
in a semantic network. Finally,‘the'goal or solution is determined by the
condition expressed and any relationships imﬁlied by the problem model.

This ﬁaper will deal with quéntitative problems. as opposed to problems of
. non-numeric reasonlng, and the representatlon used Wlll be a LISP llst of the
Form ((unknown variables)(data varlables)(relatlon)) where each of the three items
in the list is a sublist and (relation) is a LISP routine which expresses a
rclationship which holds among the data objects and the unknowns.

Denote a problem representation by Pi' Let Ci denote the class of problems
represented by Pi' Problem generation, then, is a map which has Pi as a dependent
variable and which takes values in C;.

The sublists determine problem subclasses. For example, let Ci be the
collection of force, mass, acceleration problems of elementary physics. Than a
subclass of C; is represented by Pij = ((force)(mass écceleration)(function))

where function expresses the relationship given by the equation force = mass

acceleration.

In this context, an implementation of a generation map can involve several
phases.  In the first phase, the sublists can be manipulated, combined, or
portions of them generated or deleted to produce new lists. A second phase could
provide a semantic interpretation of the representation list,‘using, fbr example,

a temantic network. A third phase could then express the interpreted list in a
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frum natural ta a ypers,
The tirst phase is of primary concern here because the generation of representa-

tions will provide a significant increase in generative capability.

3. Dualify and Prcblem Solution

The solution to a problem is essentially determlned by the expressed and
implied relationships which hold between the data and the unknown items of a
problem. Indeed, the discovery of these re2ationships is often the goal in
s0lving a problem. For example, the function of the representation ((force)

(mass acceleratlon)(functlon)), gives the key to the subclass of force, mass,
dGcceleration problems represented

Thus, in the list representation, the problem itself is represented by
((unknown)(data)) and the solution by (functlon)

Let C be the class of problems under condideration. A problem solv1ng
system is described by a pair (R, S) where R represents a subclass of C and S
iz a solution method or routine for this subclass.

Given a collectlon_{(Ri, Si)}, the formalism below investigates the following
set of interrelated questions: ,

1) how can the problem subclasses be extended whlle keeping the collection

of solution routines, {S }, the same

2) what are some relations on {(Ri, Si)}, what structures exist on this

collection

3) what manipulations and operations can be performed on the lists Pi to

produce new representations .

4) (duality) what are corresponding operations on the procedures Si which

produce solution routines for the new classes.

The duality of problem and solution operations‘will be expressed by an
operator pair which operates on the list representafions, i’ef,Fhe problem operator
acts on ((unknown)(data)) and the solution operator part acts on (function).

The objects (R S. ) are general and S could represent special routines,
such as (DETUN oFORCE (XT{) (SETQ FORCE '(PRODUCT X Y)) where X will be mass and
Y acceleratlon. Si could also be a general problem solver such as a theorem
prover. An appealing use of a general deductive system (such as a theorem prover)
would be for high level inferences for the manlpulatlon of the (R., S ). Also,

the determination of which S to employ and how to use it to solve a problem would

be decided by some other S.. . 37
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An example of a relationship which holds among problems is that of sub-
problem. The dual relationship on the solution routines is subsolution. This
structure is rather simple and obvious. Nonetheless, it is important for a
system to have a way of representing knowledge of such structures. What are other
structures? The structural information which a generative system uses is know-
ledge that a problem solving system ?hbuld also have.

4. Abstract Problems

This following section illustrates the approach to problem generatlon and

solution which is used to find answers to the above questions.

Certain subclasses of a given collection of problems are represented by a
structure called a basic abstract problem. Some relations on abstract problems
are introduced and a partial order on them can be defined. A complex abstract
problem is one that is constructed from several basic abstract problems. Con=~
siderations of composition techniques using the relatlons are made. -

To each basic abstract problem there will correspond a problem solver, or
solution method, Corresponding wrelationships for solution methods are also
considered. A complex abstract problem will be “s6lvable using a combination of

the problem solvers associated with its basic abstract problem constituents.

Definitions and Elementary Results

An abstract problem is defined to be a triple of the form ((unknown)(data)
(relation)) where (unknown) is = list of.variables whose values are sought as the
solution to a problem represen-ted, (data) is a list of input 'variables, and
(relation) defines a function which assigns unique values to the unknowns for
edach list of data values.

An abstract problem which. is input to the first phase of problem generation
is said to be basic. Basic abstract problems are assumed to be solvable, that is
have a given associated solution routine. ,

-~ Tor example, ((FORCE) (MASS ACCELERATION) (SFORCE MASS ACCELERATION)) is a
basic abstraect problem.

An interpretation (unevialuated) of an abstract problem is defined to be an
association of properties, objects, relationships to the data and the unknown.

The associations must be senantically meanlngful (for example, according to a

semantic network) with respect to the sublists of the problem representation.
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For example, an interpretation of the abstract problem given above might
be the association of a physicalvobject with properties of mass, acceleration,
and another physical object with the property force, such that the second object
exerts its force on the first object. A prcblem in the class represented might be:
a ball has a mass of x pounds and an acceleration of y feet per second. What
force was exertea on it when it was hit by a bat? -

The predicate of an abstract .problem ((unknown)(data)(function)) is the
predicate PR such that PR (unknown data) is true if and only if the value(s) of v
the unknown(R) are the value(s) given by the function defined by (function) when
evaluated on (data).  Predicates can be used for formal proofs concerning abstract
problems. If the predicate of a problem cen be proved from the predicates of
basic abstract problems, the structure of the solution in terms of basic solution

procedures is determined by the proof.

A. Constructions on Abstract Problems _ o
The constructions on abstract problems involve set theoretic and functional

operations. Constructions include subproblem, specializatibh,-generalization,
analogy, transformation, union (or concatenation), composition, cascade, and
domain dependent constructions. These constructions are implemented as operators
which apply, on the one hand, to sublists R and, on the other, to solutlon

| routlnes S The main syntactlc generatlve operatlons are union, composition,
cascade, and certain kinds of transformations. Subproblem is a decomposition
technique which yields, ultimately, basic problems. Specialization, generalization,
and analogy are also special cases of transformation. They‘have a syntactic

aspect but also involve unsolved semantic issues.

B. Power_ ‘ _
A problem generation and solving system is described by a triple (C R S)
where R is a representation for the class of problems C which can be solved by |
the solution method S.
The size and variety of C is one measure of the power 6r capability of such
a system. Power can be increased by enlarging C while keeping S fixed 2) enlarging
C while extending S or by 3) decreasing the degree of specialization required ef,
the user to implement S while keeping C and S (the method) fixed.
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The following discussion is primarily directed towards 1) and 3). For
example, let ({Ci},{Ri};{Si}) bera collection whereci is a subclass of,
problems represnted by Ri and solvable by Si and the collection is part of a
CAI system. Ci deals with a.particular concept of the course, Ri may be:a
generative grammar or a generation routine which generates problems dealing with
the concept,. and Si solves the generatéd problems and monitors the student solutions.
The system can be extended by simply adding more basic elements, (C., R,y 8s ).
Relations on the basic elements could be defined. This introduces a structure
21 the collection of basic elements, which can be represented by a graph called -
a concept graph in a CAI application (13). The intent of the relations is to
increase the size of C=U, C or to decrease the degree of specification required
to express solution routines. The relations, in effect, serve as part of the’
control structure. Koffman used the relations of‘subproblem and prerequisite
problem and these determined poss1ble calling sequences among the routines {R }
and {S }. The relations will serve as part of the definition of a generation
map so that a set of elements (or abstract problems) can be represented and
replaced by another smaller set of basic elements and a generation map. Finally,
-the system could be made more powerful by giving it the capabilities of deter-
mining the structures on the basic elements or of determining when the relations

hold rather than having the structures explicitly stored or indicated, say by a

N

- graph. | |
The basic abstract problems are those which will be used as building blocks

out of which complex abstract problems, not explicitly represented, can be constructed
Further, the basic abstract problems are assumed to. be . solvable, and, depending

on the constructions used, the complex abstract problems will also be solvable‘by

an appropriate combination of the basic solution routines. We will be interested

in studying the effect of problem operations on problem generation and problem

solution routines.

C. Union
Let P. and P, be two abstract problems with P, ((Y )(X )(S )) and
1 = ((Yj)(XJ)(S )) with predicates PR, and PRJ, respectively
The union or concatenation of P and PJ, denoted’ P U Pj’ is defined to be

(Y )U(YJ)) (X )U(XJ)) (SP LU P )) where Sp y p is a solution routine for all
. ;U P.
&5
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the problems represented and is determined by the conjunction of PRi and PRj.
'U', union, on the variables indicates set union. The superscript denotes a
list of variables.

The union of problems is depicted by the diagram

Xl Pi “>¥l
J “
X ) PJ 44}Yj
P, UP
3

The implementation of union of problems is denoted by PUNION.

D. Composition

Anofher syntactic type of operation is composition. Composition makes ﬁse
of substitution, which, also, is at the 'heart' of resolution. Moreover, composition -
is fundamental to LISP. | :

Suppose P, = ((Yi)(xi)(si)) and Pj = ((Yj)(xj)(Sj)) where Y. is a single elemeét
and (¥,) < (x)). o

Pj * Pi’ the composition of Pi and ?j’ is defined to be ((YJ)((Xl) 9]

Cx-(v,))) (Sp,.p,)) vhere s

i ] 3
(X7)) A PRj((Y MY U (X )-(¥:)))).

is determined by the predicate PR, ((Y,)

e

P..P,
]

Diagrammatically, Pj . Pi is given by

i i J

11
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The implementation of composition is called PCOMPOS.
. Cascade
The cascade operation is a generalization of both the union and comp051tlon

operations.
Agaln let P = ((Y )(X )(S )) and P = ((Yj)(Xj)(Sj)) Also, assume

that (Y )n(XJ) is not empty.
j /o P,  the cascade of P, and P]’ is defined to be (((YJ)U((Y ) -

rtned ) huced) - (rhnadn) (Sp.o/0 200> ¥here Sp oo p,
1 1

is determined by the predicate PR, «rh ot ))APR, ceydyccerHned -

crhnexd .
The cascade of Pi and Pj is illustrated by the following diagram

5 cvhy-cyHnexdyn

i (yi)n (x3)
X" = P

>v)

3

xH)-CeyHned y yme—e— 3

The implementarion of cascade is denoted PCASCADE.

F. Map N
Another natural relation which can hold among abstract problems is that of

map or transformation. Let Pi and Pj be as above.
A map from P, to Pj is a pair (f £, ) where f, : (Y )———XYJ) and f, : (xT)—%x7)
such that if PR.((Yl) (x*)) is true then PR.(f Ca)) f2((x;))) is also true.
Then, if P, 15 an abstract problem and f= (f f ) is a palr of functions
such that PR, ((Y )(X )) true implies that PR, (f1 ((Y )) £, ((x*))) is true, then

the construction by map gives the abstract problem f(Pi) = ((fl((Yl)))(fz((Xl)))

(5.)).
If the condition on the predicates does not hold it will be necessary to

madify Si to obtain a riew solution routine.
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1t is possible to define equivalence and partial orders of abstract problems
and these could bLe shown to Le preserved by a map of abstract problems.

A simple example of a map for elementary physics is one which changes the
units of measure. ‘

The deFinition of a higher order map would include changes to the solution
routine in addition to the variables. Thus, a higher order map would be a triple,
(fw’ £ro f ) where f and f are as above and f modifies Sl such that f (S )
masipns the proper values to f ((Y')) for data values of f ((xh)).

Some apecial types of maps are analogy, specialization and generalization.

An implementation of a map will be labeled TRANS.

5. Golution Routines
| Solution routines for probiems resulting from the above constructions are
determined by predicates obtained from corresponding logical operations oo the
predicates of the operand problems.
The solution routines for constructed problems can, therefore, be obtalned

from solution operators which correspond to the respective loglcal operatlons.

“These "solution operator operate on basic solution routines to synthesize complex

solution routines.
Implementations of the colution operators for PUNION, PCOMPOS, AND PCASCADE

will be termed SUNION, SCOMPOS, AND SCASCADE, respectively.

Using this notation union of abstract problems, for example, becomes Pi U Pj=

ccerhudy (o)) csunton s; ).

(scoMPoS (A) (B) (S)) will mean to substitute A for B in the routine S. A
similar notation will be used for SCASCADE.
'ropositions:

It is easily seen that PUNION is associative and commutative. PCOMPOS and
PCASCADE are associative. R

Also, if Pj is a union of abstract problems, then Pj o Pi can be written as
a union, that is o is left distributive over union.

Using the basic abstract problems and the operations of union and composition,
complex problems can be constructed. By the left distributivity of composition
over union each of these complex problems can be written in a standard‘form-

For example, (PCOKPOS P, (PUNION P, (PCOMPOS P, (PUNION P, PS)))) =

(PUN1CN (PCOMPOS Pl PQ) (PUN ION ( PCOMPOS Pl (PCOMPOS P3 Pu)) ( PCOMPOS Pl
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(PCOMPOS Py P )))). If PUNION is defined as am n-ary operation (a FEXPR in
LISP), the expression becomes (PUNION (PCOMPOS P, P,) (PCOMPOS P, (PCOMPOS Py P,))
(PCOMPOS‘Pl (PCOMPOS P, P )))), which has the formv(PUNION P_PP, ...) where
each operand is a basic abstract problem. Similar computations hold for the
solution operators. '

These results are used to implement SCASCADE.

Intuitively, SUNION concatenates its argument routines. SCCMPOS makes a
substitution for a variable in a given routine. (SCASCADE (A) (B) (C)) means
t0 substitute each element of the);ist (A) for a corresponding variable in the
list (lefor each occurrence of that variable in the routine C. Theh SCASCADE
can be implemented by first putting the complex solution of Pi (in Pj o/o Pi)
in standard form and repeatedly applying SCOMPOS until all the substitutions

have been made.

tb. Control
The control which specifies the manner in which abstract problems are combined

and how a solution routine is synthesized is contained within the operators
themselves. The decision when to apply the operators and which problem operands
to be operated on is made by a planning routine. For some applications, the
planning routine need only consist of a random selection mechanism for selecting
operators and problem representations to be operated on. For instance, for

problem generation for CAI, such decisions could be made randomly, with constraint

by a complexity measure.

Far other applications and other operators, the planning routine will need
semantic information. In these situations the planning routine could incorporate
path tracing and pattern matching mechanisms for tracing within a semantic network.

There is an analogue with programming languages. Here the concern is that
of combining lists and procedures using operators via a plaﬁning routine rather
than combining elementary statements via a program. Also, here the attempt is

to incorporate decision making capability within the planning routine.

7. {Computational Issues

Given n basic abstract problems, the number of meaningful abstract problems
which can Le generated using PUNION, PCOMPOS, AND PCASCADE can easily be seen to
be Lounded below by n ané above by 2"-1.

This does not say that the number of meanirgful ?epresentations generated
will approach the upper bound. The actual number which can be generated depends

on the mutual relevance of the given n basic representations. For 2AI applications
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most useful problems will be the result of at most 3 cr 4 appiications of the
opcrétors.
On the other hand recall that the discussion still pertains to the represent-
ation level and each representation will be used in conjunction with, say, a
semantic net to produce many specific problems.
Another example
The above operators are natural ones for quantitative subjects and for use
in LISP. ‘
Suppose a list of basic abstract problems from the topic of uniformly
acceleration motion consicsts of the following three representations:
1) ((DISTANCE) (AV-VEL TIME) (SDIS AV-VEL TIME)) where distance, average velocity,
und time are written as LISP atoms which point to a semantic net and SDIS is a
LIGP funetion which returns a value for distance given values for averége velocity
and time. :
?2) ((Acc) (VEL-INIT-VEL TIME) (SACC VEL INIT-VEL TIME)) where SACC returns a
value for ACC given velocity, imitial velocity, and timé as arguments.
3) ((AV-VLL) (VEL INIT-VEL) (SAVVEL VEL INIT-VEL)) where SAVVEL is a LISP
routine which defines average velocity.
PCOMOS applies to 3) and 1) gives ((DISTANCE) (VEL INIT-VEL TIME) (SCOMPOS
(SAVVIL VEL INIT-VEL) (AV-VEL) (SDIS AV-VEL TIME))), where SCOMPOS substitutes
the expression {SAVVEL VEL INIT-VEL) for AV-VEL in the function SDIS before it
v evaluated. '
Transforming 2) and compoéing with the representation just generated would
pive ((DISTANCE)(INIT-VEL TIME ACC) (SCOMPOS (TRAN VEL (SACC VEL INIT-VEL TIME))
(VL) (SCOMPOS (SAVVEL VEL INIT-VEL) (AV-VEL) (SDIS AV -VEL TIME)))).
TRAN would be a symbolic manipulation routine for solving for velocity in
term: of acceleration, initial velocity, and time given (SACC VEL INIT-VEL TIME).
The resulting abstract problem has a solution routine which corresponds to
. derivation of the equation distance = (initial-velocity °+ time) + (acceleration .

.20,
time~),/2.

4.  Conclusions

The pacter has represented a model and approach to problem generation and
nelution, which consists of an exprossion duality between problem generation and
problem solution, a study of the structure of a problem in terms of basic problems,

the expression of structural relations as operators and routines, the elevation
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of some control to a higher level (to a structure on abstract problems and
solution routines rather than one on elementary programming statements).’~ This
approach seems to allow easy incorporation of direction and semantic knowledge,
larpe inference, steps, and additional inference operators. It is related to
tormal lopic via the predicate of an abstract problem and has significance for
automatic synthesis of programs because it discusses the synthesis of routines
oui of routines rather than elementary statements; for algebraic manipulation,
niinee’ it suggests a flexible notation and approach with the possibility of know-
ledge manipulation.

The model and development provide a context or setting which brings forth
wany additional questions such as the incorporation of static knowledge to
cxtend some of the operators beyond their formal manipulation capability,
questions on the interplay of static knowledge in a data base or net and dynamic
knowledge in the form of routines, 'surgery' for the modification of a routine,

and applications to other problem areas including programming languages.
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V. A NATURAL LANGUAGE LISP TUTOR
1. Introduction

Natural language understanding is becoming more impoftant in CAI systems.
Many powerful parsers have beén developed for very extensive subsets of English
including Wood's parser (1l4) and Winograd's PROGRAMMAR (15). These methods are
heginning to be of use for qﬁestion answering sub-systems and for interpreting
student responses. Of particular interest is the work done by Brown et al. (16).
it is his semantically driven fuzzy grammar that has influenced this research.

Brown analyzed student scenarios involving electronic circuit trouble-
shooting and discovered that the concepts and items discussed fell into small
numbers of semantic groupings or categories.

These included: measurements, control settings, circuit elaments, and
circuit locations relative to the electronic circuit. The parse was then
‘accomplished by anticipating and looking for phrases which matched these semantic
categories where fhey might be appropriate. The parser's fuzziness stems from
the fact that words that are not understood can be skipped over.

Teaching a programming language embraces two major tasks. One is presenting
new material in an orderly controlled fashion. The other involves making available
a friendly, informative environment that allows experimentation;”éﬁd that can
recognize errors and misconceptions and point them out. With ISLE (Interactive
Student LISP Environment) we have concentrated on this second item by developing
a4 computer based environment for LISP. The system knows about the structure and
semantics of the LISP language and can answer questions about LISP data structures,
concepts and functions; both those functions defined by the student and the primitives
internal to the system.

As an example consider the following dialogue:

STUDENT: 1Is Atom a functior.

MACHINE: Yes, Atom is a subr.

STUDENT: How many arguments does it take?
MACHINE: Atom is a subr and takes 1 argument.

Notice that questions are answered with a complete statement to avoid
any ambiguity, also note the use of the pronoun it by the student. Some limited

anaphoric reference is permitted by the system to allow a more natural dialogue.
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OTUDENT: Describe it ‘

MACHINE: - Atom is a subr. and a predicate function

B *It returns true (the Atom T) if its argument
.is an atom, nil otherwise.

STUDENT: What 1s an Atom?
MACHINE: An Atom is the most elementary type of s-expression.
It may be either a number or a literal atom.

Some words like atom can refer to more than one thing. The correct reference
is found by looking at the context of the word and making a decision based on
plural markers, determiners, or qualifying adjectives. '

STUDENT: Are property lists kinds of 1lists?

MACHINE: A property or'P list is an alternating list of literal
atom property names and corresponding property values.
It can be search using the function GET. -

Subset-superset and part-part of relationships are used extensively
by the system for answering questions of this type. A yes answer is implied
here Ly giving the student a definition of the subset item.

STUDLNT: Define (((FACT (LAMBDA (X) (COND
((ZEROO X) 1)
(T (TIMES X (FACT (SUB 1 X)))))))))))

MACHINE: Arguments for Evalquote:
DEFINE
(((FACT (LAMBDA (X) (COND((ZERQCO X) L) (T(TIMES X
(FACT (SUB1 x)))))))))
VALUE 1IS:
(FACT)

Any student input that has the form of a function followed by an argument
list is assumed to be input for the evaluator. Here the student defines a
lunction to compute factorials.

STUDENT: FACT (3))
 MACHINE: Arguments for Evalquote
FACT
(3)
VALUE 1IS:
Undefined function found.
It is ZEPOO found in the function fact.

In defining FACT the student mistyped ZEROP. The error is found during
evaluation and returned to the student. Notice that terminating symbols are
necessary at the end of each student input line. They may be periods, question
marks or an extra right parenthesis. '

© e = "STUDENT ¢ PRINT FACT.
- MACHINE: (LAMBDA (X) (COND & §&))
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When printing function definitions only the highest elements of the
definition appear;. lower level structures are replaced with &.

STUDENT: 3 2 p.
MACHINE: ((ZEROO X) 1)

Now u:ing commands to the editor, the student looks at theilower level
where he remenbers ZEROP should go.

STUDENT: 1 (1 ZEROP) P.
MACHINL: (ZEROP X)

The error is now corrected and this can be checked by evaluation or
by auking  another guestion.

STUDENT: Does FACT call any undefined functions?
MACHINE: FACT calls no undefined functions.

STUDENT: TACT (3))
. MACHINE: Arguments for Evalquote.
e FACT
; (3)
VALUE IS:
6

Syutem Orpanization

The system is built around several submodules as shown in Figure 4. Each
ﬂtudnnt command or request is received by the monitor where it is classified as
input for either the editor, the evaluator, or the parser. Any input which is not
«irher a list of edit commands or a function followed by an argument list is
atwumed to be a request for information and so is passed to the parser. Anything
rhe parser can not handle is rejected and the student is asked to rephrase or
break up the question.

The parser and the semantic routines work together to answer factual
quesnt ions about the LISP iénguage, its data structures and functions, and about
tiw functions that student has defined. The parser mechanism has a semantic basis
in that specific words or phrases are looked for that refer to‘thingé the system
Fnows about, i.e. functions, definitions, or entries in the seméntic networks.
These items are divided into groups or categories that are semantically similar.

Semint ically similar items are those that might fit in a given slot in a

sontence or question, and that fall into a superset classification such as data
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STUDENT N
NBUT 5  MONITOR
/
.//
" | SEMANTIC
PARSER SPECIALIST EVALUATOR EDITOR
ROUTINES

PERMANENT SEMANTIC
INFORMATION :
DEFINITIONS,
RELATIONS, ETC.

SEMANTIC
LNRTWORK

TEMPORARY SEMANTIC
+ INFORMATION:
DIALOGUE HISTORY,
STUDENT-DEFTINED
FUNCTIONS, ETC.

SYSTEM DATA-STRUCTURES

ISLE System Organization - Figure 4
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Structures or function namés. The result of the pérse is an executable LISP
function whose evaluation causes a response to be generated for the student.

| The evaluator evaluates student functions when called upon, accepting nearly
any LISP 1.5 constructions. When student errors are'found; it reports the type
of error and in what function it occurred té the student. Editor commands can
Laen be used to look around inside of function definitions and tb insert, delete,

and change parts of the definitionm.

THE GRAMMAR AND ITS IMPLEMENTATION

The heart of the English understanding cémponent of the systeh is a
BNF grammar. After a line has been read in, an iﬁterpretétion of it is attempted
using an implementation of the grammar shown in Appendix B. 1In the SOPHIE system [16],
every non-terminal'is considered a semantic entity to be searched for when necessary.
In the ISLE system, however, only a few of the rules dre actually concerned with
semantic entities or categories. These semantic'entities are defined as only those’
things which have entry in the semantic network. 'The rules which embody certain
semantic groups have already been described. The rest of the grammar rules are
used to identify requests for certain relationships or properties of the semantic
entities. "

Most programs which make use of a grammar use some kind of pérser or
frammar interpreter. This parser (a program) then uses a table or array in which®
the grammar rules are stored (data). Special control structures must be set up
f64é6ﬁtrol backing up when an incorrect parse is begun. In ISLE, this grammar
iz implemented directly in LISP.. For each rule (non-terminal) in the grammar,
there is a corresponding LISP function with the same name implementing that rule.
‘The LISP control structures make this implementation relatively easy due to the

recursive definition of LISP functions in general and the use of the special built-in
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functions; - COND, AND, and OR. Backup is automatic as each rule-function can
let its calling rule-functions know of its failure on return. All pointers and
variable values will again be those originally set in the calling function. There

is nothing to undo or redo as the LISP control structure handles this automatically.

THE SEMANTIC ROUTINES

The parsing operation, if it is successful will produce another LISP
function to be evaluated. Soﬁe of thééé functions and the sentences that produced
_thém are given in TABLE 11. Each is a call to a predefined semanfic routine.

The funétions FN, FTYPE, CONCEPT, and STRUCTURE retrieve the desired semantic
information for their arguments. In this way words such as ATOM are disambiguated.
For example, (FN ATOM) will rvetrieve information relevant to the fﬁnction ATOM,
while (STRUCTURE ATOM) will retrieve the information concerning thé structure,
PREF 1s used to find semantic information for pronouns which it does by matching

its arguments against the semantic categories of previously mentioned items.

TABLE 11 Sentences and Their Translation Into
LISP Functions

IS ATOM A FUNCTION?

(RELATE (FN ATOM) (FTYPE FUNCTION))

HOW MANY ARGUMENTS DOES IT TAKE?

(ARGCOUNT (LIST (PREF FN)))

DESCRIBE IT.

(DESCRIBE (LIST (PREF FN FTYPE CONCEPT STRUCURE)))

WHAT IS AN ATOM?

( DESCRIBE (LIST (STRUCTURE ATOM)))
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ISLE's 'semantic routines are all specialists for answering their own
. types of questions. Some take information directly from the network to be
given to the student or to be used in comparison or relationship tests.
DESCRIBE, for example; gives the student a pre—defined definition or deseription
if it exists. In the case of student defined functions, it tells the stident
the type of function it is. RELATE reports on 'superset' 'subset', and 'part-of'
relationships between its arguments. ~ARGCOUNT checks the semantic information
ansociated with”if; afgﬁmént, or in the case of student defined functions-the
artual furiction definition, to tell how many arguments a particular function has.
The permanent semantic information used by these functions is set up as
association lists of relationships and values for each semantic‘entity. Table 12
shows this information for the structural item atom. The value of the relationship
TEST is the name of a predicate function which tests for the associated semantic
entity. In this‘case, the function ATOM tests for the structure which is an atom.
TYPE and TYPE OF indicate subset‘and'supersef relationships, and DESCRIPYION in-

dicates a literazl definition of the ttem.
TABLE 12 Semantic Information for the Structure ATOM

((TEST - ATOM)

(TYPE OF . (S-EXPRESSION INDICATOR))

(TYPE - (LITERAL NUMBER))

(PART OF - (S-EXPRESSION DOTTED-PAIR LIST)i

(DESCRIPTION - ((AN ATOM IS THE MOST ELEMENTARY TYPE OF
S~-EXPRESSION (DOT)) :

(IT MAY BE EITHER A NUMBER OR A LITERAL ATOM (DOT)))))

Other temporary information that might bé used by the semantic routines
‘can be created and changed in various ways. When a student defines a function,
the function is analyzed and lists of the variables it binds or uses and the
functions it calls are created. This information jis used by the routines which
handle questions about the student's functions and is updated whenever a function
is edited or redefined. The éditor and the evaluator also store information that

could "he used by the question-answering system. This is done whenever errors
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occur and includes information about the current state of the evaluator of editor
{e.g. the aunociation 1ist) and the cause of the error. This would alloﬁ the
" student to obtain more information about the source of the error and what the

evaluator (or editor) was doing before the error occurred.

CONCLUSION _ |

This system is undergoing contiﬁued'development. The question-answer is
being expanded to allow the student to get more of the information he or she might
want and to perform more edit functions in English. .
| " ISLE is impleménted in LISP which runs interactively on an IBM 360/65.

This Interactive LISP is an improved version of the Waterloo LISP which uses a
cathode~-ray display as the active user terminal. ‘

Preliminary indications are that the system will serve as a useful tool for
Familiarizing a student with LISP concepts. The question answering capability
illows a student to inquire about the semantics of LISP; he can use the LISP student
‘évaluator to test his knowledge of LISP syntax and to help him correct his errors. .
The expanded diagnostic information presented should help him clear-up initial
misconceptions and ease his transition from ISLE to the standard LISP evaluator.

This approach appears to be general in that one could present ény material
of a factual nature in a similar manner. SOPHIE [16] is an example of a similar
system for teaching electroniec-circuit analysis and trouble-shooting. Other
programming languages, logic circuit design, and‘basicjalgebra and calculus might '

possibly be taught using a similar computer environment.
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VI OVERALL EVALUATION

This project has studied the topics of student modelling, concept selection,
penerative CAI, problem generation and solution, and natural language in CAI.

As a vehicle for the stﬁdy of thé;éntopics, several experimental teaching systems
have been designed and implemented. .
An introductory course in digital design and programming which utilizes the
nvistems described in Sections I, II and III of thkis report has been taught to five
sections of students. (approximately twenty-five students/section)# The results
of this experiment have been described above and were genérally vary satisfactory.
The conclusion from this experiment is that genemative CAI is a very effective
medium for teaching quantitative college-level courses. The major advantages are
‘the puided direction in the problem-solving process provided to beginning students,
and the presentation of instantaneous feedback and remedials when the student goes
astray. Generative CAI also frees the instructor from discussing routine,.algorithmic
procedures in class, and allows him to concentrate on more complex concepts. Through
the use of a monitor which makes "intelligent" decisions concerning the concept

to be studied, the difficulty of the problem to be generated, and the degree of
explanation and student monitoring provided; instruction can become highly individual-
ized. In this way, the system makes the maximum use of each computer session.

The student is also free to proceed at his own pace and override any of the monitor's
decisions. |

The major drawback to generative CAI is the cost of designing and operating
these systems. The design was, of course, a one-time expense and entailed many
man-hours of effort. Unfortunately, there is no accurate accounting available
of the time spent in the implementation of this system. Many routines were written
L.v the principal investigator; some were implemented as portions of Master's
Thesis; others were independent study projects.

The cost of operating the system averages out to approximately $100 per
student per semester. This provides on the average of four terminal hours per -
student per week. Certainly, this is expensive compared to the design goal (not

- y¥r attained) of the PLATO system of $.50 per terminal hour per student. Unlike
PLATO, it should be noted that this system was not implemented on hardware
cenfigured and intended exclusively for CAI; rather, it was implemented on the

1B 360/65 computer which was not really designed for time-sharing.
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To provide the same degree of individualized instruction for twenty-five
students would require hiring five graduate assistants (assuming a 20 hour/week
workload). The cost of five graduate assistants for a semester would be approxi-
mately $8,000. The cost of generative CAI (appréximately $3500) would he consider—
ably less. .

Additional studies in the use of Artificial Intelligence techniques have
provided a general model for the generation and solution of problems {Section
IV). This model aiso appears to have applicability in areas of artificial
Intelligence research such as Problem Solving and Program Synthesis.

A hardware-software system was constructed for use in the digital laboratory.
This system was very successful in teaching students how to apply classroom
concepts in the design of actual digital circuits.

In addition to the system described in Section III, a digital services
system was built which acted as a "front-end" for the original system. The digital-"
services system aided students in all phases of the design problem and subsequently
transferred control to the debugging phase of the original system to verify the
correctness of the student's design. Any hardware bugs or faults were located,
with student assistance, and eliminated. '

/. mocdel Tor a natural language CAI sysfem previously proposed by Brown (16)
was adapted fop use in an Interactive Student-oriented LISP Environment (ISLE).

The implementation of this system was relatively straight-forward once the LISP
Interprqfer was mo@ified to run interactively on the IBM 360/65. Its use verified
vhat Al research in natural-language processing could be effectively applied in
the' design of teaching systems.

Oneé interesting feature of all of the research decribed herein is the broad
spectrum of teaching activities and techniques covered. The activities range °
from electrical engineering courses in the theory, design, and laboratory construction
of digital circuits to computer science courses in machine-language programming
and the LISP computer language. Contributions were also made to problem generation
4nd ‘'solution in general as well as problem~generation in high school algebra (5).
The computerized teaching techniques included generative CAI, which was normally
under system control, a digital circuit debugger which provided a mixture of
ntudent and system control, and finally a LISP learning environment which was

entirely under student control
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This research is a small step in the application of Artificial Intelligeﬁce

techniques to CAI. It is expected that {uture research along these lines will

contribute to the continued growth of Artificial Intelligence and provide signi-

ficant enhancement to the intelligent use of computers in instruction.
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APPENDIX A

EXAMPLES OF PROBLEM GENERATION

The following illustration uses nine basic problems from the area of
elementary physics. Problem representations are generated at random. 1In order
to reduce duplication generated abstract problemé were hashed using the MACLISP
system function SXHASH and the number values stored. Repetitions are still possible
sirce, for example, (SXHASH '(A B)) # (SXHASH '(B A)), yet (A B) = (B A) as sets.
Hovever, the amount of repetition is drastically reduced.

For this session the solution operators were executed to produce the
solution routines. All of tHe generated routines have noblambda variables or
prog variables; all the variables are global to the session. ‘

Note problem representation 4. It was décidgd to allow the union of two
problems where the input of one is the output of the other. The intent is that
on an intepreted level this will take the form of two different instances of ‘the
same variable (e.g. an av-vel, and an av-ve12). '

Twenty-three distinct problems and their solution routines were generated
before the session was terminated by typing in NIL. Problem 23 is a nice example.
G00l6 means that 16 'DEFUN' rotuines were generated.

MNotice that the third basic problem was not output; the PLAN routine uses
i1 random or nondeterw;inistic control structure.

Complexity refers to the number of operators applied. It gives one measure

of the difficulty of a problem and provides one way of defining a partial order.

(MAIN)

(ENTER OPERATOR NAME) PUNION

(ENTER OPERATOR NAME) PCOMPOS

(ENTER OPERATOR NAME) PCASCADE

(ENTER OPERATOR NAME) NIL , )

(ENTER PROBLEM TUPLES) ((FORCE)(MASS ACCEL) (SFORCE MASS ACCEL)) ,
(ENTER PROBLEM TUPLES) ((ACCEL) (VELI VEL 2 .TIME)(SACCEL VEL1l VEL2 TIME}}
(ENTER PROBLEM TUPLES) ((AV-VEL) (VELl VEL2)(SAV-VEL VELl VEL2))

(ENTER PROBLEM TUPLES) (DIST)(AV-VEL TIME)(SDIST AV~VEL TIME))

(ENTER PROBLEM TUPLES ((ACCEL)(GRAV)(SEQ ACCEL-GRAV))

(ENTER PROBLEM TUPLES)((WEIGHT)(MASS GRAV)(SWEIGHT MASS GRAV))

(ENTER PROBLEM TUPLES)((MOMENTUM)(MASS VEL)(SMOMENTUM MASS VEL))

(ENTER PROBLEM TUPLES)((IMPULSE) (FORCE TIME)(SIMPULSE FORCE TIME))
(ENTER PROBLEM TUPLES) NIL

(ENTER GO OR NIL) GO

(ENTER COMPLEXITY)-2

UNKNOWN ¢

(ACCEL) 99

DATA:
(CRAV)




Appendix A-2

SOLUTION:
(SEQ ACCEL GRAV)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN
2(CENTRI-ACCEL)

DATA:
(VEL RADIUS)

SOT.UTION:
(SCENTRI-ACCEL VEL RADIUS)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN :

3(AV-VEL MOMENTUM)

DATA:
(VCL1 VEL2 MASS VEL)

SOLUTION: ‘
(DEFUN GOQOLl.#IL (PROG NIL (SAV-VEL VEL1 VEL2) (SMOMENTUM MASS VEL)))

(ENTER GO OR NILL) GO
(ENTER COMPLEXITY)} 2

UNKNOWN:

4({DIST ACCIL AV-VEL)

DATEA:
(TIMFE VEL1 VEL2)

- SOLUTION:
- (DLFUN GUO02 NIL (PROG NIL (SDIST AV-VEL TIME} {SACCEL VEL1 VEL2 TIME)(SAV-VEL VEL1 VEL2)))

(ENTER GO OR NIL) SO
(ENTER COMPLEXITY) 2
UNKNCWN:
S(ACCEL)

DATH
(VEL1 VEL2 TIME)

SOLUTICN:
(SACCEL VEL1 VEL2 TIME)

(ENTER GO OR NIL) GO

(ENTER COMPLEXITY) 2 nuplicate problem generated
(ENTER GO OR NIL) GO

(ENTER COMPLEXITY) 2
~GUNKNOWN :
(CENTRI-ACCEL I'OKCE)
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DATA :
(VL1 PALIUS GPFAV MASS)

SOLUTION:
(DE:uN G0003 NIL (PROG NIL (SCENTRI ACCEL VEL RADIUS) ( SFORCE MASS (SEQ ACCEL GRAV))))

(LNTER GO OR NIL) GO

(ENTL? COMPLEXITY) 2

ENTER TO OR NIL) GO : \ ,
(ENTER COMPLEXITY) 2 \ e
UNKNOWN : o ’ o
“7{MOMENTUM IMPULSE)

- DATA:

(MASS VEL FORCE TIME)

SOLUTTION: o

(DLFUN GOOO4 NIL (PROG NIL (SMOMENTUM MASS VEL) (SIMPULSE FORCE TIME)))

(LNTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN :

8(ACCEL WEIGHT)

DATA:
{(VI'L1 VEL 2 TIME MASS GRAV)

SOLUTION: ‘ . :
(DF}UN GOO05 NIL (PRGG NIL (SACCEL VELL VEL2 TIME) (SWEIGHT MASS GRAV)))

(LNTER GO OR NIL} GO
(ENTER COMPLEXITY) 2
(LNTER GO OR NIL) GO .
(V'MTER COMPLEXITY) 2 . , ‘ '

UNKNOWN :

9(DIST ACGEL)

DATA::
{AV-VLL VEL1l VEL2 TIME)

- »OLUTION:
(DEFUN GO0O08 NIL (PROG NIL (SDIST AV-VEL TIME) (SACCEL VEL1 VEL2 TIME)))

(LNTER GO OR NWIL) GO
(ENTER COMPLEXITY) 2
{INKNOWN :

10(IMPULSE)

DATA:
(FORCE TIML)

SOLUTION:
(DEFUN GOOO7 NIL (PROG NIL (SIMPULSE FORCE TIME)))
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(LNTER GO OR H11L) GO
~ (ENTER COMPLLXITY) 2
- (ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN ;
11(ACCEL DIST)

DATA:
(GRAV AV-VEL TIME)

SOLUTION:
{DEFUN G0008 NIL (PROG NIL (SEQ ACCEL GRAV) (SDIST AV-VEL TIME)))

(LUNTER GO OR NIL) GO
(ENTER COMPLEXITY) 2

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2

(I'NTER GO OR NIL) GO

(ENTER COMPLEXITY) 3
12UNKNOWN:

(CENTRI~ACCEL ACCEL WEIGHT)

DATA:
(VEL RADIUS MASS GRAV)

LOLUTION:
(DEFUN-G0003 NIL (PROG NIL (SCENTRI -ACCEL VEL RADIUS) (SEQ ACCEL GRAV)(SWEIGHT MASS GRAV)))

(ENTER GO OR NILL) GO 3
(FNTER COMPLEXITY) 3

13 UIKKNOWN:

(DIST I'ORCE CENTRI-ACCEL)

DATA:
(AV- v©L TIME MASS ACCEL VEL RADIUS)

SOLUTION'
{DLEFUN GOOLO NIL (PROG NIL (SDIST AV-VEL TIME) (SFORCE MASS ACCEL) (SCEN TRI-ACCEL VEL

kADIUS)))

(ENTER G¢ OR NIL)
(TRY AGAI)

(INTER GO OR NII) GO
(LNTER COMPLEXITY) 3
T4 IINXNOWN ¢

THEIUHT CENTRI-ACCEL)

DATA .
(MASS GRA&V VEL RADIUS)

LOLUTTON: _
(DEFUN GOO1l NIL (PROG NIL (SWEIGHT MASS GRAV) (SCENTRI-ACCEL VEL RADIUS)))
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(ENTER GO OR NIL) GO
(LINTER COMPLEXITY) 3
LNKNOWN :

15 (1'ORCE)

DATA
(MASS ACCEL)

SOLUTION:
(SI'ORCE MASS ACCEL)

(i.NTIR GO OR NIL) GO
(LNTER COMPLEXTTY) 2
UNKNOWN :

16(FORCE. ACCEL IMPULSE)

DATA:
(MASS VEL1 VEL? TIME)

GOLUTION: ‘ ‘
(LEYUN GOO12 NIL (PROG NIL (SFORCE MASS ACCEL)(SACCEL ~VELl VEL2 TIME)(SIMPULSE FORCE

TIME)))

(ENTER GO OR NIL) GO

(ENTER COMPLLXITY)2 . o
UNKNOWN : .
17( IMPULSE ACCEL) e

DATA ¢ ‘
(MASS VELL VEL2 TIME)

SOLUTION: .

(DET'UN GOO13 NIL (PROG NIL (SIMPULSE (SFORCE MASS ACCEL) TIME) (SACCEL /EL1l VEL2 TIME)))
(ENTER GO OR NIL) GO

(ENTER COMPLEXITY) 2

UNKNOWN : ‘

18(pIstT) - ‘ \

DATA:
(AV-VEL TIME)

COLUTION
(DIGT AV-VEI TIME)

. {ENTIR GO OR NTL) GO
- (LNTER COMPLEXITY) 1
(I'NTIR GO OR NIL) GO
. (INTER COMPILXITY) 1
UNKNOWN :
E9(MOMENTUM)

DATA 63

(MASS VEL)
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SOLUTION:
(SMOMLNTUM MASS VEL)

(ENTER GO OR NIL) GO
(ENTCR COMPLEXITY) 1
UUNKNOWN :

20(FORCE)

DATA:
(GRAV MASS)

SOLUTION:
(SFORCE MASS (SEQ ACCEL GRAV))

(ENTER GO OR NIL) GO

(ENTER COMPLEXITY) 1

(ENTLR GO OR NIL) GO

(LNTER COMPLEXITY) 1 ' : R
(I'NTER €GO. OR NIL) GO -

(LNTER COMPLEXITY) 2

21UNKNOWN ;

( IMPULSE FORCL)

DATA:
(VEL1 VEL2 TIME MASS)

SOLUTION: , . '
(DEFUN GO0012 NII. (PROG NIL (SIMPULSE FORCE TIME)(SFORCE MASS (SACCEL VEL1 VEL2 TIME))))

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY)?2
(ENTER GO OR NTL) GO
ENTER COMPLEXTTY) 2
UNKNOWN :
21(CENTRI-ACCEL WEIGHT)

NDATA ;
(VEL RADIUS MASS GRAV)

SOLUTTION: : :
(DETUN GOO1% IIL (PROG NIL (SCENTRI-ACCEL VEL RADIUS)(SWEIGHT MASS GRAV )))
(ENTER GO OR NIL) GO Ceehdnid e

- (ENTER COMPLEXITY) 2 ’ . "

~—~(INTER GO .OR NIL) GO RN

(ENTER COMPLEXITY) 2
('NTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTECR GO OR NIL) GO
(ENTER: COMPLEXITY) 3
(ENTLE GO OR.NIL) GO
(LENTER COMPLEXITY) 3
UUINKNOWN :

22(WIIGHT) | : 64

ERIC

IToxt Provided by ERI
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DATA -
(MAL RAY)

GOLUTION:
(SWEIGHT MASS GRAV)

(ENTER GO OR NIL) GO

(ENTTR COMPLEXITY) 3 '
UNKNOWN :

23(MOMENTUM IMPULSE)

BRTA )
(V1,1 VEL2 MASS VEL TIME)

SOLUTIONG ‘
(DEFUN GO016 NIL (PROG NIL (SMOMENTUM MASS VEL)(SIMPULSE (SFORCE MASS (SACCEL VELL
VI;[.2 TIME)}) TIME)))

. (ENTLR GO OR NIL) NIL . . : .
TTOODIRYET T s s e

/

LK

26,45
Lilo-core-sec=z=860
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APPENDIX B
ISLE'S BNF GRAMMAR

INPUT :: =<EDIT /<EVAL>/?REQUEST>

~LDIT>:: = any valid string of LISP edit commands
-LVAL>:: = any valid pair of items of the form function arglist for evalquote.
~REQUEST»>:: = <DEFINE/Q>/<RELATION/Q>/ TEST/Q>/<COMPARISON/Q>/

<VAR/Q>/<#ARGS>/<FN/STRU/Q>/<EDIT/Q>/<FN/REF>

DESCRIBE <THINGS> [LIKE*]
WHAT is/are® '

*Does - DO ir DO - Do are also possible.

-DEI'INL/Q>:: =éfEFINE

WITH
oo COMPARTISON/Q> -+ - = - COMPARE - <THINGS > |} - ~~{~ < THINGS>
TO
WHAT IS/ARE THE DIFFERENCE(S) BETWEEN <THINGS>

DIFFERENT FROM

[HOW] IS/ARE*: <THINGS> SIMILAR TO <THINGS>
THE SAME AT

[HOW] IS/ARE:s:: STHINGS? DIFFERENT##&%

% DO or DOES = DIFFER FROM zlso works.

%% SIMILAR, THE SAME, DO - DIFFER also work.

IT, THEY KINDS of
AT s s <FN/TYPE> A TYPE OF <EN/TYPE>
RELLATION/Q>:: = IS/ARE { T/ (FF TRUCTURES
<STRUCTURES > etc.
| <STRUCTURES>
“TEST/Q >:: = s *  )<FN/TYPE>
L | DEFINED

* The underscore will match anything. In this way, sentences
like: 'Is H123 on atom?' and "Is F3 defined?' will be recognized.
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Appendix B-2

<VAR/Q>:: = WHAT [VARIABLE(S)] <FN & VRS> [THAT ARE <FNEVRS>]
*FN‘&‘VR5>:: = DOES BIND
CAN C SET
WILL (FNNAME)
SET
etc

CAN BB SggND BY <F B>
MQECBB SET IN
: FOR | HAVE
< 538 21 0= ft
#ARGS = HOW MANY ARGUMENTS 2;;m;:} NNAMB | NEED
\ FNTYPE TAKE

<FN/STRU/Q >:: = WHAT . <FN/TYPE>[ (ARE CALLED BY {}T, HIM, Hfi? SOMEHOW

IS <FNNAME> IN (SOME? WAY).
CALL(S) §IT, HIM, HE%} ANY |
<FNNAME> o

<FNNAM CALL
CAN

___________________ CALL(S)**% |< FNNAMB>
. DOES <FNNAMB> '
CAN CALL
HE

WILL IT, HE, S
MAY
DOB? id’NNAMj:j ANY ] cory ( <ENNAME>
CAN CALL SOMB <FN/TYPE>
IT, THEM,
ITSELF
i —_ -
IS <FNNAME> USED | IN <FNNAME>
ARE IT CALLED FROM <FN/TYPE>
BY IT
THEM

* ARGS also works here.
** also possible are CAN, CALL, MAY CALL, etc.
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- Appendix B-3

<FN/TYPE>
<STRUCTURES >

2 PRINT
<EDIT/Q>:: = EDIT <FNNAME>
, PRETTYPRINT
\ CAR
“FN/REF >:: = What is the CDR of <STRUCTURES>
| CADR '
etc
THINGS >:: = ('IT, THEY, THEM
‘ <CONCEPTS > ‘ '
<FN NAME> - [ AND <THINGS>]
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